

Session C3: Research Activities: Materials Degradation

Detecting Material
Degradation: Today and
Looking Forward

Jim Lang EPRI

USNRC Regulatory Information Conference 9 March 2005

The Silver Lining: We Have Lots of Experience

With Experience We Have Refined Inspection Techniques

Leak Detection

Visual

Dye Penetrant

Magnetic Particle

Radiography

Electromagnetic

Acoustic Emission

Ultrasonic

Experience Also Provides The Basis For A Risk Informed Inspection Approach

RISK = (Core Melt Potential/Pipe Rupture) vs (Potential for Pipe Rupture)

Pipe Rupture Potential	Leak Conditions	Degradation Mechanisms To Which The Segment is Susceptible
HIGH	Large	Erosion Corrosion (FAC) Water Hammer Vibration Fatigue
MEDIUM	Small	Thermal Fatigue Corrosion Fatigue Stress Corrosion Cracking (IGSCC, TGSCC, PWSCC, ECSCC) Corrosion Attack (MIC, Crevice Corrosion and Pitting) Erosion/Cavitation
LOW	None	No Degradation Mechanisms Present

RISK REGIONS		CONSEQUENCE CATEGORY Core Melt Potential for Limiting Break Size							
ME	HIGH EDIUM LOW	<u>NONE</u>	<u>LOW</u>	<u>MEDIUM</u>	<u>HIGH</u>				
CATEGORY Break/Rupture	<u>HIGH</u>	LOW RISK	MEDIUM RISK	HIGH RISK	HIGH RISK	I n			
DEGRADATION CATEGORY Potential for Large Break/Rupt	<u>MEDIUM</u>	LOW RISK	LOW RISK	MEDIUM RISK	HIGH RISK	s p e			
	<u>SMALL</u>	LOW RISK	LOW RISK	LOW RISK	MEDIUM RISK	t			

Experience Has Clearly Identified Today's Material Degradation Issues

Nickel Based Alloy Stress Corrosion Cracking

High Fluence in BWRs and PWRs

Fuel Integrity

Experience Shows That NDE Is Reliable – But There Are Gaps

Detection & sizing of small defects given the projected fast crack growth rate

Accessibility for inspection

Rough/wavy surfaces

Complex configurations

Qualification of NDE – specific to configuration

Research Is Underway To Close The Gaps

- UT Probe development to handle real configurations
 - EMAT
 - Conventional
- UT Techniques
 - Phased array
 - SH wave
- Other methods
 - Eddy current
 - Radiography

- Database of as-built configurations
- Database & assessment of NDE performance
- Enhanced modeling
- Realistic samples for technique development & qualifications
- Intensive qualification effort

Tomorrow's Issues May Be Unknown – But We've Cataloged Our Vulnerabilities

PWR	Material	SCC			Corrosion/Wear			Fatigue			Reduction in Toughness RiT								
Component	<u>scc</u>			<u>C & W</u>				<u>Fat.</u>			Aging	Irradiation							
_	¹ Subdivision→	IG	IA	TG	LTCP	PW	Wstg	Pit	Wear	FAC	HC	LC/Th	Env	Th	Emb	VS	SR	Thn	Fl
	C&LAS	?	N	?	N	?	Y	N	N	Y	N	Y	Y	Y	N/A	N/A	N/A	N/A	N/A
		<u>e002</u>		<u>e002</u>		<u>e003</u>	<u>e004</u>			<u>e005</u>		<u>e006</u>	<u>e007</u>	<u>e008</u>					
PWR	C&LAS	?	N	?	N	?	Y	N	N	Y	N	Y	Y	Y	N/A	N/A	N/A	N/A	N/A
Pressurizer	Welds	<u>e002</u>		<u>e002</u>		<u>e003</u>	<u>e004</u>			<u>e005</u>		<u>e006</u>	<u>e007</u>	<u>e008</u>					
1 1 CSSUI IZCI	Wrought	?	N	?	?	?	N	N	N	N	N	Y	Y	N	N/A	N/A	N/A	N/A	N/A
	SS	<u>e012</u>		<u>e012</u>	<u>e013</u>	<u>e012</u>						<u>e014</u>	<u>e015</u>						
(Including	SS Welds &	Y	?	Y	?	?	N	N	?	N	N	?	Y	Y	N/A	N/A	N/A	N/A	N/A
Shell, Surge and Spray	Clad	<u>e016</u>	<u>e017</u>	<u>e018</u>	<u>e013</u>	<u>e019</u>			<u>e020</u>			<u>e014</u>	<u>e015</u>	<u>e022</u>					
Nozzles, Heater	Wrought	N	N	N	?	Y	N	N	N	N	Y	Y	Y	N	N/A	N/A	N/A	N/A	N/A
Sleeves and	Ni Alloys				<u>e023</u>	<u>e023</u>					<u>e014</u>	<u>e014</u>	<u>e015</u>						
Sheaths,	Ni-base	N	?	N	Y	Y	N	N	N	N	N	Y	Y	N	N/A	N/A	N/A	N/A	N/A
Instrument Penetrations)	Welds &		<u>e024</u>		<u>e023</u>	<u>e025</u>						<u>e014</u>	<u>e015</u>						
	Clad																		

And We Know Where To Look

RISK REGIONS		CONSEQUENCE CATEGORY Core Melt Potential for Limiting Break Size								
M	HIGH EDIUM LOW	<u>NONE</u>	<u>LOW</u>	<u>MEDIUM</u>	<u>HIGH</u>					
EGORY ak/Rupture	<u>HIGH</u>	LOW RISK	MEDIUM RISK	HIGH RISK	HIGH RISK	I n				
DEGRADATION CATEGORY tential for Large Break/Rupture	MEDIUM	LOW RISK	LOW RISK	MEDIUM RISK	HIGH RISK	s p e				
DEGRADA Potential for	SMALL	LOW RISK	LOW RISK	LOW RISK	MEDIUM RISK	t				

